Pascal published a treatise on binomial coefficient . 帕斯克發(fā)表了關(guān)于二項系數(shù)的論文。
The binomial coefficients are ubiquitous in combinational theory . 二項系數(shù)在組合論中有普遍的應(yīng)用。
Prove that no four consecutive binomial coefficients can be in arithmetic progression . 證明不存在四個連續(xù)的二項系數(shù)成算術(shù)級數(shù)。
On a special binomial coefficient 一個特殊的二項系數(shù)
The solutions of the high step binomial coefficient type linear differential equation 高階二項式系數(shù)型線性微分方程
Binomial coefficient series 二項式系數(shù)的級數(shù)
Furthermore , the modern researches on the identities are investigated which are derived from the binomial coefficients , inversion relations and partition polynomials 同時從二項式公式、反演公式及分拆公式三個角度論述了近現(xiàn)代對組合恒等式的尋求和證明。
We establish a class of combinatorial identity involving two sequences and a partial sum of the binomial coefficients , which contain a lot of new and curious combinatorial identities as its special cases 建立一類包含序列與二項系數(shù)部分和的組合恒等式,得到許多新的奇異的組合恒等式。